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Count data regression models Introduction

Count Data Regression Models

Count data regression models are used to analyze data that represent count events.

Essential in situations where the response variable, N, is a non-negative integer, such as
the number of accidents, number of doctor visits, or the number of claims filed by a
policyholder in a given period.

Commonly used count data regression models include:

Poisson regression: based on Poisson distribution, suitable for data with equidispersion

Negative binomial regression: based on NB distribution, used when data exhibit
over-dispersion (variance >> mean)

Zero-inflated models: models used to address the excess zeros in the data

Boucher, Denuit, Guillen (2008), Katrien, Valdez (2012), Cameron and Trivedi (2013),
Frees, Derrig, Meyers (2014)
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Count data regression models Over-dispersion, under-dispersion

The issue of over-dispersion and under-dispersion

Two frequent characteristics that exist in count data:
over-dispersion: the presence of greater variability of the target data than is expected to be

zero inflation: the presence of excess of zeros

The issue of under-dispersion is less frequently addressed in the literature:
Less practical

Model complexity

Less severe implications for decision making

Sometimes there is focus on simplicity

While under-dispersion is less frequently encountered than over-dispersion, there are
situations when it may be crucial to identify and address it when it does occur:
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CMP distribution

Conway-Maxwell-Poisson (CMP) Distribution

The count r.v. N follows a CMP distribution if its pmf has the form

PN(n | λ, ν) =
1

Z (λ, ν)

λn

(n!)ν
, for n = 0, 1, . . . ,

where

Z (λ, ν) =
∞∑
j=0

λj

(j!)ν
, and ν ≥ 0.

No explicit expression for normalizing constant Z (λ, ν); has to be numerically evaluated.
We write N ∼ CMP(λ, ν).
When ν = 1, we have the ordinary (standard) Poisson distribution.
Conway and Maxwell (1962)
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CMP distribution Dispersion

Dispersion Parameter

Parameter ν governs the level of dispersion in the CMP distribution.

Recall that for Poisson, PN(n−1|λ)
PN(n|λ) = n

λ . For CMP distribution, we have

PN(n − 1 | λ, ν)
PN(n | λ, ν)

=
nν

λ
.

We see that when ν = 1, the CMP distribution becomes the ordinary Poisson, which
describes no dispersion.

When ν < 1, the rate of decay decreases less than Poisson and has a longer tail; this is the
case of over-dispersion.

When ν > 1, the rate of decay increases more in a nonlinear function, thus shortening the
tail of the distribution; this is the case of under-dispersion.
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Hurdle models

Hurdle Count Regression Models
Data set is described as D = (y , x ,m) where y is a vector of responses, x is a matrix of
predictor variables, and m is the number of observations.
Define binary y+ = I (y > 0) and denote positive subset or zero-truncated count as yzt .
xzt is the subset of the predictor space x corresponding to zero-truncated yzt .
Hurdle count regression model for y is a two-part model:

P(y = n) =

{
1− p, if n = 0
pPzt(n | γ, xzt), if n = 1, 2, . . .

where γ is a vector of coefficient parameters.
The pmf of the modified positive count r.v. yzt is Pzt(n | γ, xzt) = Pzt(n|γ,xzt)

1−Pzt(0|γ,xzt)

Easy to deduce that p = P(y > 0) = P(y+ = 1), with complement
1− p = P(y = 0) = P(y+ = 0).
p also depends on set of predictors x with coefficients β.
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Hurdle models Link functions

Link functions for the binary component

Binary component will be described as binary regression model based on its latent variable
interpretation.
y+i , for observation i , is related to an unobserved zi , called latent variable, as
y+i = I (zi > 0), directly linked to predictor as a linear model with an error component as
zi = xiβ + ui , where the error component ui ∼ F , its distribution function.
Given x ′i , it follows that

E(y) = p = Prob(y+i = 1) = P(zi > 0)
= P(ui > −x ′iβ) = 1− F (−x ′iβ).

When F is the d.f. of a symmetric r.v. ui with mean 0, we have p(x ′iβ) = F (x ′iβ).
In this case, F−1 determines the link function in the GLM framework.
In this paper, we consider the commonly used logit link regression model.
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Hurdle models Zero-truncated CMP

Zero-truncated CMP for the positive count

For the positive count/zero-truncated component of the Hurdle model, we can easily show
that the zero-truncated CMP distribution has the form:

Pzt(yzt | λ, ν) =
1

Z(λ,ν)

1− 1
Z(λ,ν)

λyzt

(yzt !)ν
=

1
Z (λ, ν)− 1

λyzt

(yzt !)ν
, for yzt = 1, 2, . . .

We have the zero-truncated Poisson distribution with

Pzt(yzt | λ, ν) = [1/(e−λ − 1)]λyzt/yzt !.

To incorporate predictors xzt , we use the log link functions log(λi ) = x ′zt,iγ.
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Model estimation

Model Estimation
Recall that Hurdle model can be decomposed into independent zero and positive count
data components.
Given our data set D = (y , x ,m), we can run these two models in parallel because
likelihood functions are independent:

L(β,γ | y) =
m∏
i

[pi × P∗N(yzt,i | γ, xi )]y
+
i × (1− pi )

1−y+
i

=
m∏
i

p
y+
i

i (1− pi )
1−y+

i × [P∗N(yzt,i | γ, xi )]y
+
i

=
m∏
i

(1− F (−x ′iβ))
y+
i F (−x ′iβ)

1−y+
i × [P∗N(yzt,i | γ, xi )]y

+
i

= L(β|y+)× L(γ|yzt)
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Model estimation Posterior distribution

Posterior Distribution

The parameters in all the underlying models are fully estimated using Bayesian with
multivariate normal priors.

We combine the prior distribution and the likelihood to obtain the posterior distribution:

p(β,γ|y) ∝ L(β|y+)× L(γ|yzt)× π(β,γ)

To estimate the posterior, we used MCMC based on the Metropolis-Hastings algorithm.

For the CMP distribution, we used the Exchange algorithm to handle the intractable
likelihood due to the normalizing constant.
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Model assessment

Model Assessment

For model estimate and comparison, we split the data into training and testing set using
70-30 ratio.

Measures of goodness of fit used:
DIC (Deviance Information Criterion): A Bayesian alternative to AIC and BIC. The model
with smaller DIC generally exhibits better quality of fit to the data.

LPML (Log-pseudo marginal likelihood): A leave-one-out cross-validation with log likelihood
as the criterion. We pick the model with largest LPML.

WAIC (Watanabe-Akaike information criterion): Particularly suited for Bayesian statistics.
The model with better performance yields a smaller WAIC.

All goodness of fit measures decomposes into the binary component and the
zero-truncated component.
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Empirical application

Empirical Data Investigation

We use a dataset from the U.S. Mine Safety and Health Administration (MSHA) observed
from 2013 to 2016.

The dataset was used in the Predictive Analytics exam administrated by the Society of
Actuaries in December 2018 1.

This dataset contains 53,746 observations described by 20 variables, including
compositional variables.

1The dataset is available at
https://www.soa.org/globalassets/assets/files/edu/2018/2018-12-exam-pa-data-file.zip.
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Empirical application

Empirical Application to Mining Injury Data

Table 1: Summary statistics of the number of injuries

Response variable MIN 1st Q Mean MED 3rd Q 90th 95th 99th MAX

Number of Injuries 0 0 0.4705 0 0 1 1 9 86
Employee Working Months 0.01 2.41 49.36 9.48 30.8 87.38 182.38 805.17 9460.21
* Employee Working Months was used as exposure or offset in the model.
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Empirical application

Distribution of the number of mining injuries
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Empirical application

Summary statistics of predictor variables

Table 2: Summary statistics of the predictor variables in the mining injury dataset

Categorical attribute Description Proportions

Mine type and status Type of mining methods and status. Mill&Underground&Active 7.83%
Sand&Gravel&Active 16.76%
Sand&Gravel&Intermittent 32.4%
Surface&Active 27.76%
Surface&Intermittent 15.25%

Numerical attributes Description Min. 1st Q Median Mean 3rd Q Max.

Compositional variables: Proportion of employee time spending in different work spaces
Underground operations -6.1 -4.3 -2.276 -0.428 4.253 10.355
Surface operations -13.397 -11.6 -9.639 -7.541 -3.044 10.353
Strip mine -8.23 0.9363 2.216 3.668 10.353 10.353
Auger mining -5.562 -3.751 -2.094 -0.128 4.791 10.357
Culm bank operations -4.811 -3.029 -1.332 0.619 5.541 10.361
Dredge operations -5.9 -4.048 -1.834 -0.194 4.446 10.355
Other surface mining operations -4.536 -2.754 -1.063 0.874 5.816 10.363
Independent shops and yards -2.413 -0.628 1.073 3 7.94 10.439
Mills or prep plants -7 -4.761 0.51 -0.432 3.343 10.353
* Additive logratio transformation is applied to compositional variables.
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Estimation results/performance Poisson, Negative Binomial, CMP

Estimation results: Poisson, Negative Binomial, CMP
Table 3: Estimation results of model fitting to the mining injury data

Poisson Negative
Binomial

CMP

Variables estimate 95%lower 95%upper estimate 95%lower 95%upper estimate 95%lower 95%upper

Employee time in each type of work

UnderGround 0.372 0.247 0.452 0.313 0.244 0.381 0.623 0.530 0.725
Surface -0.132 -0.294 0.088 -0.141 -0.278 0.002 -0.188 -0.364 -0.058

Strip -0.163 -0.286 -0.022 -0.069 -0.136 -0.010 -0.191 -0.246 -0.137
Auger 0.455 0.017 0.919 0.089 -0.161 0.345 0.328 0.102 0.555

Culm Bank -0.466 -1.111 0.482 -0.109 -0.330 0.138 -0.028 -0.422 0.522
Mills or Prep Plants -0.110 -0.332 0.108 -0.030 -0.112 0.062 -0.280 -0.430 -0.071

Dredge 0.161 -0.039 0.429 0.089 -0.151 0.332 0.126 -0.398 0.393
Other Surface -0.012 -0.630 0.329 -0.020 -0.184 0.129 -0.294 -0.525 -0.113

Shops and Yards 0.119 0.041 0.194 0.081 0.037 0.131 0.301 0.242 0.367
Mine Status and Type

Sand and Gravel Active 0.522 0.245 0.764 0.129 -0.025 0.294 1.011 0.776 1.267
Sand and Gravel Intermittent 0.508 0.249 0.758 0.111 -0.071 0.282 1.026 0.616 1.551

Surface Active 0.318 0.111 0.533 0.129 0.013 0.261 0.687 0.560 0.844
Surface Intermittent 0.580 0.330 0.829 0.233 0.066 0.409 0.599 0.214 0.955

1/dispersion 1.285 1.186 1.384
dispersion 0.712 0.453 0.876

DIC 39077 35877 36140.7
LPML -21646.78 -17890 -18130.93
WAIC 38213.56 35757 36078.15

Yin, Dey, Valdez, Gan, Li (U of Connecticut) Flexible Modeling of Hurdle CMP Distributions with ... 16 / 21



Estimation results/performance logit, zero-truncated Poisson, zero-truncated CMP

Estimation results: logit, zero-truncated Poisson, zero-truncated CMP

Table 4: Estimation results of model fitting to the mining injury data

logit zero-truncated Poisson zero-truncated CMP

Variables estimate 95%lower 95%upper estimate 95%lower 95%upper estimate 95%lower 95%upper

Employee time in each type of work

UnderGround 1.266 1.146 1.375 0.222 0.173 0.262 0.163 0.102 0.214
Surface -0.492 -0.670 -0.292 -0.196 -0.280 -0.120 -0.083 -0.185 0.006

Strip 0.164 0.066 0.250 -0.385 -0.435 -0.333 -0.404 -0.488 -0.349
Auger -0.477 -0.804 -0.101 0.260 0.141 0.417 0.401 0.034 0.776

Culm Bank -1.520 -2.113 -0.939 0.445 0.307 0.600 0.432 0.266 0.673
Mills or Prep Plants 0.181 0.075 0.291 -0.293 -0.383 -0.207 -0.408 -0.539 -0.297

Dredge 0.152 -0.279 0.583 -0.006 -0.131 0.116 -0.058 -0.226 0.136
Other Surface 0.147 -0.065 0.407 0.219 0.097 0.355 0.303 0.094 0.471

Mine Status and Type

Shops and Yards 0.627 0.566 0.699 -0.012 -0.047 0.024 -0.013 -0.083 0.019
Sand and Gravel Active -0.351 -0.545 -0.155 1.171 1.000 1.347 1.290 1.119 1.447

Sand and Gravel Intermittent -1.960 -2.158 -1.735 1.900 1.681 2.160 2.084 1.757 2.338
Surface Active 0.061 -0.144 0.220 0.518 0.397 0.629 0.508 0.396 0.664

Surface Intermittent -1.702 -1.908 -1.483 1.715 1.532 1.926 1.832 1.592 2.079
dispersion 0.978 0.960 0.992

DIC 35356.3 34707.51
LPML -17389 -16553
WAIC 35227.76 33578
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Estimation results/performance logit, zero-truncated Poisson, zero-truncated CMP

Density plot of P(yi = 0) for Hurdle models

0

2

4

6

8

0.25 0.50 0.75 1.00
probability 
 Mine Data

de
ns

ity model

Logit

0

50

100

0.94 0.96 0.98
probability 
 Mine Data

de
ns

ity model

CMP
Poisson

Yin, Dey, Valdez, Gan, Li (U of Connecticut) Flexible Modeling of Hurdle CMP Distributions with ... 18 / 21



Model performance Expected cost

Model performance: expected cost of injuries
Table 5: Model performance comparison based on predicted samples

Model True Counts Expected Cost

Nonevent 1-10 11+ $ 82,291,940
Poisson Nonevent 11932 1406 2

1-10 237 701 35
11+ 1 54 73

Negative Binomial Nonevent 11915 1356 3 $ 76,117,733
1-10 255 745 37
11+ 0 60 70

CMP Nonevent 11821 1308 2 $ 75,958,412
1-10 348 813 44
11+ 1 40 64

logit+ZTPoisson Nonevent 8702 613 1 $ 14,725,719
1-10 3469 1479 33
11+ 0 69 75

logit+ZTCMP Nonevent 8571 594 1 $14,153,858
1-10 3597 1513 37
11+ 2 54 72

* $46,400 is the average cost of nonfatal injuries. Camm, Girard-Dwyer (2005)
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Concluding remarks

Concluding remarks

Here, we introduce the flexibility of applying the Hurdle structure with
Conway-Maxwell-Poisson (CMP) distribution and integrate use of binary link function as
better alternative to Poisson and Negative Binomial.

The CMP distribution introduces a parameterization than can handle a wide range of
dispersion: under-dispersion, over-dispersion.

While not presented here, we also performed simulation studies to understand the
performance of the CMP models against other well-known count models such as Poisson
and Negative Binomial.

We offer methods to estimate parameters: Bayesian with MCMC.

Count regression models will continue to be important in insurance and actuarial science.
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